Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors.
نویسندگان
چکیده
The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4-8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.
منابع مشابه
Transposons for Non-Viral Gene Transfer
DNA based transposon vectors offer a mechanism for non-viral gene delivery into mamma‐ lian and human cells. These vectors work via a cut-and-paste mechanim whereby transpo‐ son DNA containing a transgene(s) of interest is integrated into chromosomal DNA by a transposase enzyme. The first DNA based transposon system which worked efficienty in human cells was sleeping beauty. This was followed a...
متن کاملNonviral gene delivery with the sleeping beauty transposon system.
Effective gene therapy requires robust delivery of therapeutic genes into relevant target cells, long-term gene expression, and minimal risks of secondary effects. Nonviral gene transfer approaches typically result in only short-lived transgene expression in primary cells, because of the lack of nuclear maintenance of the vector over several rounds of cell division. The development of efficient...
متن کاملSleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells
The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibrobla...
متن کاملSleeping Beauty transposition: from biology to applications.
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was transla...
متن کاملEfficient Sleeping Beauty DNA Transposition From DNA Minicircles
DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular therapy : the journal of the American Society of Gene Therapy
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2018